Как найти формулу радиуса окружности, вписанной в треугольник

Если окружность располагается внутри угла и касается его сторон, её называют вписанной в этот угол. Центр такой вписанной окружности располагается на биссектрисе этого угла.

Если окружность располагается внутри угла и касается его сторон, её называют вписанной в этот угол. Центр такой вписанной окружности располагается на биссектрисе этого угла.

Если же она лежит внутри выпуклого многоугольника и соприкасается со всеми его сторонами, она называется вписанной в выпуклый многоугольник.

Окружность, вписанная в треугольник

Окружность, вписанная в треугольник, соприкасается с каждой стороной этой фигуры лишь в одной точке. В один треугольник возможно вписать лишь одну окружность.

Радиус такой окружности будет зависеть от следующих параметров треугольника:

  1. Длин сторон треугольника.
  2. Его площади.
  3. Его периметра.
  4. Величины углов треугольника.

Для того чтобы вычислить радиус вписанной окружности в треугольник, не всегда обязательно знать все перечисленные выше параметры, поскольку они взаимосвязаны между собой через тригонометрические функции.

Вычисление с помощью полупериметра

Чтобы рассчитать величину радиуса вписанной окружности в треугольник, необходимо учитывать следующие параметры:

  1. Если известны длины всех сторон геометрической фигуры (обозначим их буквами a, b и c), то вычислять радиус придётся путём извлечения квадратного корня.
  2. Приступая к вычислениям, необходимо добавить к исходным данным ещё одну переменную — полупериметр (р). Его можно рассчитать, сложив все длины и полученную сумму разделив на 2. p = (a+b+c)/2. Таким образом можно существенно упростить формулу нахождения радиуса.
  3. В целом формула должна включать в себя знак радикала, под который помещается дробь, знаменателем этой дроби будет величина полупериметра р.
  4. Числителем данной дроби будет представлять собой произведение разностей (p-a)*(p-b)*(p-c)
  5. Таким образом, полный вид формулы будет представлен следующим образом: r = √(p-a)*(p-b)*(p-c)/p).

Вписанная в треугольник окружность

Вычисление с учётом площади треугольника

Если нам известна площадь треугольника и длины всех его сторон, это позволит найти радиус интересующей нас окружности, не прибегая к извлечению корней.

  1. Для начала нужно удвоить величину площади.
  2. Результат делится на сумму длин всех сторон. Тогда формула будет выглядеть следующим образом: r = 2*S/(a+b+c).
  3. Если воспользоваться величиной полупериметра, можно получить совсем простую формулу: r = S/p.

Расчёт с помощью тригонометрических функций

Если в условии задачи присутствует длина одной из сторон, величина противоположного угла и периметр, можно воспользоваться тригонометрической функцией — тангенсом. В этом случае формула расчёта будет иметь следующий вид:

r = (P /2- a)* tg (α/2), где r — искомый радиус, Р — периметр, а — значение длины одной из сторон, α — величина противоположного стороне, а угла.

Радиус окружности, которую необходимо будет вписывать в правильный треугольник, можно найти по формуле r = a*√3/6.

Окружность, вписанная в прямоугольный треугольник

В прямоугольный треугольник можно вписать только одну окружность. Центр такой окружности одновременно служит точкой пересечения всех биссектрис. Эта геометрическая фигура имеет некоторые отличительные черты, которые необходимо учесть, вычисляя радиус вписанной окружности.

  1. Для начала необходимо выстроить прямоугольный треугольник с заданными параметрами. Построить такую фигуру можно по размеру её одной стороны и величинам двух углов или же по двум сторонам и углу между этими сторонами. Все эти параметры должны быть указаны в условии задачи. Треугольник обозначается как АВС, причём С — это вершина прямого угла. Катеты при этом обозначаются переменными, а и b, а гипотенуза — переменной с.
  2. Для построения классической формулы и вычисления радиуса окружности необходимо найти размеры всех сторон описанной в условии задачи фигуры и по ним вычислить полупериметр. Если в условиях даются размеры двух катетов, по ним можно вычислить величину гипотенузы, исходя из теоремы Пифагора.
  3. Если в условии дан размер одного катета и одного угла, необходимо понять, прилежащий этот угол или противолежащий. В первом случае гипотенуза находится с помощью теоремы синусов: с=a/sinСАВ, во втором случае применяют теорему косинусов с=a/cosCBA.
  4. Когда все расчёты выполнены и величины всех сторон известны, находят полупериметр по формуле, описанной выше.
  5. Зная величину полупериметра, можно найти радиус. Формула представляет собой дробь. Её числителем является произведение разностей полупериметра и каждой из сторон, а знаменателем —величина полупериметра.

Окружность в прямоугольный треугольник

Следует заметить, что числитель данной формулы является показателем площади. В этом случае формула нахождения радиуса гораздо упрощается — достаточно разделить площадь на полупериметр.

Определить площадь геометрической фигуры можно и в том случае, если известны оба катета. По сумме квадратов этих катетов находится гипотенуза, далее вычисляется полупериметр. Вычислить площадь можно, умножив друг на друга величины катетов и разделив полученное на 2.

Если в условиях даны длины и катетов и гипотенузы, определить радиус можно по очень простой формуле: для этого складываются длины катетов, из полученного числа вычитается длина гипотенузы. Результат необходимо разделить пополам.

Видео

Из этого видео вы узнаете, как находить радиус вписанной в треугольник окружности.

Окружность, вписанная в треугольник — как найти радиус

Определение

Вписанной в треугольник окружностью называют такую окружность, которая занимает внутреннее пространство геометрической фигуры, соприкасаясь со всеми ее сторонами.

В таком случае грани треугольника представляют собой касательные к этой окружности. Сама геометрическая фигура с тремя углами считается описанной вокруг рассматриваемой окружности.

Вписанная окружность
Источник: people-ask.ru

Свойства вписанной в треугольник окружности

Окружность, которую вписали в треугольник, обладает определенными свойствами. Основные из них можно записать таким образом:

  1. Центр окружности, которую вписали в треугольник, совпадает с точкой пересечения биссектрис этой геометрической фигуры.
  2. Во внутреннее пространство любого треугольника можно вписать лишь одну окружность.
  3. Формула радиуса окружности, который вписали во многоугольник с тремя углами, будет иметь такой вид:
Радиус
Источник: people-ask.ru

В представленной формуле радиуса окружности использованы следующие величины:

  • S – является площадью треугольника;
  • р – представляет собой полупериметр геометрической фигуры;
  • a, b, c – являются сторонами треугольника.

Перечисленные свойства необходимо доказать.

Первое свойство

Требуется доказать, что центр окружности, которую вписали в фигуру с тремя углами, совпадает с точкой пересечения биссектрис.

Доказательство построено в несколько этапов:

  1. Необходимо опустить из центральной точки окружности перпендикулярные прямые OL, OK и OM, которые опускаются на стороны треугольника АВС. Из вершин треугольника следует провести прямые, соединяющие их с центром фигуры OA, OC и OB.
3 Доказательство
Источник: people-ask.ru
  1. Далее можно рассмотреть пару треугольников AOM и AOK. Можно отметить, что они являются прямоугольными, так как OM и OK являются перпендикулярами к сторонам AC и AB. Гипотенуза OA является общей для пары этих фигур.
  2. Исходя из того, что касательная к окружности является перпендикуляром к радиусу, который проведен в точку касания, согласно свойству касательной к окружности, то катеты OМ и OК представляют собой радиусы окружности и, следовательно, равны.
  3. Согласно полученным утверждениям, можно сделать вывод о равенстве прямоугольных треугольников AOМ и AOК по гипотенузе и катету. Таким образом, углы OAМ и OAК тоже равны. Получается, что OA является биссектрисой угла BAC.
  4. Аналогично можно доказать, что OC является биссектрисой угла ACB, а OB – биссектрисой угла ABC.
  5. Таким образом, биссектрисы треугольника совпадают в одной точке, которая представляет собой центр вписанной окружности.

Данное свойство окружности доказано.

Второе свойство

Необходимо представить доказательства свойства окружности, согласно которому в любой треугольник можно вписать окружность, причем только одну.

Доказательство состоит из нескольких этапов:

  1. Окружность получится вписать в треугольник в том случае, когда существует точка, удаленная на равные расстояния от сторон геометрической фигуры.
  2. Можно построить пару биссектрис ОА и ОС. Из точки, в которой они пересекаются, необходимо опустить перпендикулярные прямые OK, OL и OM ко всем граням многоугольника с тремя углами ABC.
4 Второе свойство
Источник: people-ask.ru
  1. Затем следует рассмотреть пару треугольников AOK и AOM.
  2. Эти фигуры обладают общей гипотенузой АО. Углы OAK и OAM равны, так как OA является биссектрисой угла KAM. Углы OKA и OMA прямые, то есть также равны, так как OK и OM являются перпендикулярами к сторонам AB и AC.
  3. Исходя из того, что две пары углов равны, можно сделать вывод о равенстве третьей пары AOM и AOK.
  4. Таким образом, получилось подтвердить равенство треугольников AOK и AOM по стороне AO и двум углам, которые к ней прилегают.
5 Второе свойство
Источник: people-ask.ru
  1. Удалось определить равенство сторон ОМ и ОК, то есть они удалены на одинаковое расстояние от сторон геометрической фигуры АС и АВ.
  2. Аналогично можно доказать, что OM и OL равны, то есть равноудалены от граней AC и BC.
  3. Таким образом, точка равноудалена от сторон треугольника, что делает ее центром окружности, которая вписана в этот многоугольник.
  4. Аналогичным способом можно определить точку во внутреннем пространстве любой геометрической фигуры с тремя углами, которая будет удалена на равные расстояния от его сторон, и представляет собой центр окружности, вписанной в этот треугольник.
  5. Исходя из вышесказанного, можно сделать вывод о том, что в любой треугольник можно вписать окружность.
  6. Необходимо заметить, что центральная точка окружности совпадает с точкой, в которой пересекаются биссектрисы треугольника.
  7. Можно допустить ситуацию, при которой в геометрическую фигуру с тремя углами можно вписать две и более окружности.
  8. Необходимо провести три прямые из вершин геометрической фигуры к центральной точке окружности, вписанной в нее, и опустить перпендикулярные прямые к каждой грани треугольника. Таким образом, будет доказано, что рассматриваемая окружность лежит на пересечении биссектрис треугольника, согласно доказательству ее первого свойства.
  9. Получим совпадение центральной точки окружности и центра первой окружности, которая уже была вписана в этот треугольник, а ее радиус соответствует перпендикуляру, опущенному на сторону треугольника так же, как и в первом случае. Можно сделать вывод о совпадении этих окружностей.
  10. Аналогично любая другая окружность, вписанная в геометрическую фигуру с тремя углами, будет совпадать с первой окружностью.
  11. Таким образом, в треугольник получается вписать лишь одну окружность.

Свойство доказано.

Третье свойство

Требуется доказать, что радиус окружности, которую вписали в геометрическую фигуру с тремя углами, представляет собой отношение площади треугольника к полупериметру:

6 Формула
Источник: people-ask.ru

Кроме того, необходимо представить доказательства следующему равенству:

7 Формула
Источник: people-ask.ru

Доказательство:

8 Треугольник
Источник: people-ask.ru
  1. Следует рассмотреть произвольный треугольник АВС, стороны которого соответствуют a, b и c. Для расчета полупериметра данного треугольника целесообразно использовать формулу:
9 Формула
Источник: people-ask.ru
  1. Центральная точка окружности совпадает с точкой пересечения биссектрис геометрической фигуры с тремя углами. Прямые OA, OB и OC, которые соединяют O с вершинами треугольника АВС, разделяют геометрическую фигуру на три части: AOC, COB, BOA. Площадь треугольника ABC представляет собой сумму площадей этих трех частей.
10 Формула
Источник: people-ask.ru
  1. Исходя из того, что площадь какого-либо треугольника представляет собой половину произведения его основания на высоту, а высота треугольников AOC, COB, BOA рассчитывается, как радиус окружности r, то площади треугольников AOC, COB и BOA можно определить по формулам:
11 Формула
Источник: people-ask.ru
  1. Далее необходимо представить площадь S геометрической фигуры АВС, как сумму площадей нескольких треугольников:
12 Формула
Источник: people-ask.ru
  1. Следует отметить, что второй множитель является полупериметром геометрической фигуры с тремя углами АВС, что можно записать в виде равенства:
13 Формула
Источник: people-ask.ru
14 Формула
Источник: people-ask.ru
  1. Таким образом, доказано равенство радиуса вписанной окружности и отношения площади треугольника к полупериметру.
  2. Можно записать формулу Герона, смысл которой заключается в следующем: площадь треугольника (S) равняется квадратному корню из произведения его полупериметра (p) на разности полупериметра и каждой из его сторон (a, b, c)
15 Формула
Источник: people-ask.ru
  1. Далее следует преобразовать формулу для расчета радиуса:
16 Формула
Источник: people-ask.ru

Свойство окружности доказано.

Формулы вычисления радиуса вписанной окружности

Параметры окружности, которую вписали в геометрическую фигуру с тремя углами, можно рассчитать с помощью стандартных формул. Радиус окружности будет определен в зависимости от типа треугольника.

Произвольный треугольник

Определить радиус окружности, которая вписана в какой-либо треугольник, можно, как удвоенную площадь треугольника, поделенную на его периметр.

17 Формула
Источник: microexcel.ru

В данном случае, a, b, c являются сторонами геометрической фигуры с тремя углами, S – ее площадь.

Прямоугольный треугольник

Радиус окружности, которую вписали в треугольник с прямым углом, представляет собой дробь с числителем в виде суммы катетов за минусом гипотезы и знаменателем, равным числу 2.

18 Формула
Источник: microexcel.ru

В формуле a и b являются катетами, c – гипотенузой треугольника.

Равнобедренный треугольник

Радиус окружности, которая вписана в равнобедренный треугольник, определяют по формуле:

19 Формула
Источник: microexcel.ru

В этом случае a – боковые стороны, b – основание треугольника.

Равносторонний треугольник

Расчет радиуса окружности, которая вписана в правильный или равносторонний треугольник, выполняют по формуле:

20 Формула
Источник: microexcel.ru

где a – сторона геометрической фигуры с тремя углами.

Как найти через высоту или стороны, примеры решения

Задача 1

Имеется геометрическая фигура с тремя углами, стороны которой составляют 5, 7 и 10 см. Требуется определить радиус окружности, которая вписана в этот треугольник.

Решение

В первую очередь необходимо определить, какова площадь треугольника. Для этого можно воспользоваться формулой Герона:

21 Формула
Источник: microexcel.ru

Затем применим формулу для расчета радиуса круга:

22 Формула
Источник: microexcel.ru

Ответ: радиус окружности составляет примерно 1,48 см.

Задача 2

Необходимо рассчитать радиус окружности, которая вписана в равнобедренный треугольник. Боковые стороны геометрической фигуры составляют 16 см, а основание равно 7 см.

Решение

Следует использовать подходящую формулу для расчета радиуса, подставив в нее известные величины:

23 Формула
Источник: microexcel.ru

Ответ: радиус окружности примерно равен 2,8 см.

Здравствуйте мои дорогие подписчики и гости сайта 9111.ru!

На самом деле эту тему проходят еще в начальных классах обычной школы. И все, кто хорошо учился, сразу смогут сказать, о чем идет речь. Ну, или хотя бы точно понять, что РАДИУС как-то связан с окружностью.

Что такое радиус

И действительно:

Радиус – это отрезок, который начинается в центре окружности и заканчивается в любой точке ее поверхности. В то же время так называется и длина этого отрезка.

Вот так это выглядит графически.

**************************************

Само слово РАДИУС имеет латинские корни. Оно произошло от «radius», что можно перевести как «луч» или «спица колеса». Впервые этот математический термин ввел французский ученый П.Ромус. Было это в 1569 году.

Но потребовалось чуть более ста лет, чтобы слово РАДИУС прижилось и стало общепринятым.

Кстати, есть еще несколько значений слова РАДИУС:

  • Размер охвата чего-нибудь или сфера распространения. Например, говорят «Огонь уничтожил все в радиусе 10 километров» или «ОН показал на карте радиус действия артиллерии»;
  • В анатомии этим словом обозначают Лучевую кость предплечья.

Но, конечно, нас интересует РАДИУС как математический термин. А потому и продолжим говорить именно о нем.

Радиус и диаметр

Радиус в математике всегда обозначается латинской буквой «R» или «r». Принципиальной разницы, большую букву писать или маленькую, нет.

А два соединенных вместе радиуса, которые к тому же находятся на одной прямой, называются диаметром. Или по-другому:

Диаметр – это отрезок, который проходит через центр окружности и соединяет две противоположные точки на ее поверхности. По аналогии с радиусом под диаметром подразумевают и длину этого отрезка.

Обозначается диаметр также первой буквой своего слова – D или d.

Исходя из определения диаметра, можно сделать простой вывод, который одновременно является одной из базовых основ геометрии.

А именно:

Длина диаметра равна удвоенной длине радиуса.

Примеры задач

Задание 1

Длина окружности равняется 87,92 см. Найдите ее радиус.

Решение:

Используем первую формулу (через периметр):

Задание 2

Найдите радиус круга, если его площадь составляет 254,34 см 2.

Решение:

Воспользуемся формулой, выраженной через площадь фигуры:

Формулы для радиуса описанной окружности

Найти радиус описанной окружности треугольника по сторонам

Формула радиуса описанной окружности треугольника (R ) :

Найти радиус описанной окружности равностороннего треугольника по стороне или высоте

Формула радиуса описанной окружности равностороннего треугольника через его сторону:

Формула радиуса описанной окружности равностороннего треугольника через высоту:

Найти радиус описанной окружности равнобедренного треугольника по сторонам

Зная стороны равнобедренного треугольника, можно по формуле, найти, радиус описанной окружности около этого треугольника.

Формула радиуса описанной окружности равнобедренного треугольника (R):

Найти радиус описанной окружности прямоугольного треугольника по катетам

Радиус описанной окружности прямоугольного треугольника равен половине его гипотенузы.

Формула радиуса описанной окружности прямоугольного треугольника (R):

Радиус описанной окружности трапеции по сторонам и диагонали

Формула радиуса описанной окружности равнобокой трапеции, (R)

Найти радиус описанной окружности около квадрата

Радиус описанной окружности квадрата равен половине его диагонали

Формула радиуса описанной окружности квадрата (R):

Радиус описанной окружности прямоугольника по сторонам

Радиус описанной окружности прямоугольника равен половине его диагонали

Формула радиуса описанной окружности прямоугольника (R):

Радиус описанной окружности правильного многоугольника

Формула радиуса описанной окружности правильного многоугольника, (R):

Радиус описанной окружности правильного шестиугольника

Радиус описанной окружности правильного шестиугольника (R):

Формулы для радиуса вписанной окружности

Радиус вписанной окружности в треугольник

Формула радиуса вписанной окружности в треугольник (r):

Радиус вписанной окружности в равносторонний треугольник

Формула для радиуса вписанной окружности в равносторонний треугольник (r):

Радиус вписанной окружности равнобедренный треугольник

1. Формулы радиуса вписанной окружности если известны: стороны и угол

Формула радиуса вписанной окружности в равнобедренный треугольник через стороны (r ) :

Формула радиуса вписанной окружности в равнобедренный треугольник через сторону и угол (r ) :

2. Формулы радиуса вписанной окружности если известны: сторона и высота

Формула радиуса вписанной окружности в равнобедренный треугольник через сторону и высоту (r ) :

Радиус вписанной окружности в прямоугольный треугольник

Формула радиуса вписанной окружности в прямоугольный треугольник (r):

Радиус вписанной окружности в равнобочную трапецию

Формула радиуса вписанной окружности равнобочной трапеции (r):

Радиус вписанной окружности в квадрат

Формула радиуса вписанной окружности в квадрат (r):

Радиус вписанной окружности в ромб

1. Формулы радиуса вписанной окружности если известны: диагональ, стороны и угол

Формула радиуса вписанной окружности в ромб через диагонали (r ) :

Формула радиуса вписанной окружности в ромб через сторону и угол (r ) :

Формула радиуса вписанной окружности в ромб через диагональ и угол (r ) :

Формула радиуса вписанной окружности в ромб через диагональ и сторону (r ) :

2. Радиус вписанной окружности ромба, равен половине его высоты

Формула радиуса вписанной окружности в ромб (r ) :

Радиус вписанной окружности в правильный многоугольник

Формула радиуса вписанной окружности в правильный многоугольник, (r):

Радиус вписанной окружности в шестиугольник

Формула радиуса вписанной окружности в шестиугольник, (r):

Примеры задач

Задание 1

Дан треугольник со сторонами 5, 7 и 10 см. Вычислите радиус вписанной в него окружности.

Решение

Сперва вычислим площадь треугольника. Для этого применим формулу Герона:

Остается только применить соответствующую формулу для вычисления радиуса круга:

Задание 2

Боковые стороны равнобедренного треугольника равны 16 см, а основание 7 см. Найдите радиус вписанной в фигуру окружности.

Решение

Воспользуемся подходящей формулой, подставив в нее известные значения:

Всем спасибо и приятного просмотра! Если понравилась публикация подписывайтесь и ставьте палец вверх!

Источники:

  • https://KtoNaNovenkogo.ru/voprosy-i-otvety/radius-chto-ehto-takoe-kak-najti-radius-okruzhnosti-formula.html
  • https://MicroExcel.ru/radius-kruga/
  • https://www-formula.ru/2011-09-24-00-42-22
  • https://www-formula.ru/2011-09-24-00-40-48
  • https://MicroExcel.ru/radius-vpisannogo-v-treugolnik-kruga/

Радиус вписанной окружности в треугольник

Радиус вписанной окружности

Треугольник представляет часть плоскости, которая ограничена тремя точками, расположенные не на одной прямой и 3-мя отрезками, соединяющими эти точки. У треугольника 3 вершины, а также 3 стороны и 3 угла В произвольный треугольник можно вписать лишь одну окружность, которая будет касаться всех его сторон. Центром вписанной окружности будет место пересечения биссектрис треугольника. Расстояние от центра до точек касания со сторонами треугольника равняется радиусу вписанной окружности.Расчет радиуса вписанной окружности в произвольный треугольник производится как корень квадратный из произведения разниц между полупериметром треугольника и каждой из его сторон, деленное на его полупериметр. Формула для определения радиуса:

radius-vpisannoy-okruzhnosti-v-treugolnik1 radius-vpisannoy-okruzhnosti-v-treugolnik2

В представленной формуле:a, b, c — величины сторон треугольника;r — величина радиуса;p — величина полупериметра.Полупериметр треугольника равен сумме его сторон, деленное на 2 :

p = (a + b + c)/2

Чтобы сэкономить время и усилия, воспользуйтесь онлайн калькулятором, который в считанные секунды произведет нужные вычисления и выдаст правильный ответ.

радиус треугольник

Радиус вписанной в треугольник окружности можно найти по одной общей формуле.

Кроме того, для правильного и прямоугольного треугольников существуют дополнительные формулы.

Радиус вписанной в треугольник окружности для произвольного треугольника

radius vpisannoy v treugolnik okruzhnostiФормула для нахождения радиуса окружности, вписанной в произвольный треугольник: 

\[r = \frac{S}{p},\]

где S — площадь треугольника, p — его полупериметр.

Для треугольника со сторонами a, b, c полупериметр

\[p = \frac{{a + b + c}}{2},\]

и формулу можно записать так:

\[r = \frac{{2S}}{{a + b + c}}.\]

Если нужно найти радиус вписанной в треугольник окружности по его сторонам, то площадь треугольника ищут по формуле Герона, соответственно, формула для нахождения радиуса треугольника по трем сторонам имеет вид:

\[r = \frac{{2\sqrt {p(p - a)p - b)(p - c)} }}{{a + b + c}}.\]

Радиус вписанной в прямоугольный треугольник окружности

radius vpisannoy v pryamougolnyiy treugolnik okruzhnostiФормула для нахождения радиуса вписанной в прямоугольный треугольник окружности:

\[r = \frac{{a + b - c}}{2},\]

где a, b — длины катетов, c — длина гипотенузы.

Радиус окружности, вписанной в правильный (то есть равносторонний) треугольник

radius vpisannoy v pravilnyiy treugolnik okruzhnostiФормула для нахождения радиуса окружности, вписанной в правильный треугольник:

\[r = \frac{a}{{2\sqrt 3 }}\]

или (без иррациональности в знаменателе):

\[r = \frac{{a\sqrt 3 }}{6},\]

где a -длина стороны правильного треугольника.

В правильном треугольнике радиус вписанной окружности также можно найти через радиус описанной окружности:

\[r = \frac{R}{2}.\]

Вписанные и описанные треугольники. Еще две формулы площади треугольника. Теорема синусов

Вписанный треугольник — треугольник, все вершины которого лежат на окружности. Тогда окружность называется описанной вокруг треугольника.

Очевидно, расстояние от центра описанной окружности до каждой из вершин треугольника одинаково и равно радиусу этой окружности.

Вокруг любого треугольника можно описать окружность, причем только одну.

Окружность вписана в треугольник, если она касается всех его сторон. Тогда сам треугольник будет описанным вокруг окружности. Расстояние от центра вписанной окружности до каждой из сторон треугольника равно радиусу этой окружности.

В любой треугольник можно вписать окружность, причем только одну.

Вписанные и описанные треугольники

Попробуйте сами описать окружность вокруг треугольника и вписать окружность в треугольник.

Как вы думаете, почему центр вписанной окружности — это точка пересечения биссектрис треугольника, а центр описанной окружности — точка пересечения серединных перпендикуляров к его сторонам?

В задачах ЕГЭ чаще всего встречаются вписанные и описанные правильные треугольники.

Есть и другие задачи. Для их решения вам понадобятся еще две формулы площади треугольника, а также теорема синусов.

Вот еще две формулы для площади.Площадь треугольника равна половине произведения его периметра на радиус вписанной окружности.

S=p \cdot r,

где p=\genfrac{}{}{}{0}{\displaystyle 1}{\displaystyle 2} \left( a+b+c \right) — полупериметр,

r — радиус окружности, вписанной в треугольник.

Есть и еще одна формула, применяемая в основном в задачах части C:

S=\genfrac{}{}{}{0}{abc}{4R}

где a, b, c — стороны треугольника, R — радиус описанной окружности.

Для любого треугольника верна теорема синусов:

Теорема синусов

Ты нашел то, что искал? Поделись с друзьями!

1. Радиус окружности, вписанной в равнобедренный прямоугольный треугольник, равен 2. Найдите гипотенузу c этого треугольника. В ответе укажите c\left( \sqrt{2}-1 \right).

Рисунок к задаче 1

Треугольник прямоугольный и равнобедренный. Значит, его катеты одинаковы. Пусть каждый катет равен a. Тогда гипотенуза равна a\sqrt{2}.

Запишем площадь треугольника АВС двумя способами:

S=\genfrac{}{}{}{0}{\displaystyle 1}{\displaystyle 2} a^2

S=\genfrac{}{}{}{0}{\displaystyle 1}{\displaystyle 2}\left( 2a + a\sqrt{2}\right)r

Приравняв эти выражения, получим, что a=\left( 2 + \sqrt{2}\right)r. Поскольку r=2, получаем, что a=4+2\sqrt{2}. Тогда c=a\sqrt{2}=4+4\sqrt{2}=4\left( 1+\sqrt{2} \right).

В ответ запишем c\left( \sqrt{2}-1 \right)=4.

Ответ: 4.

2. Сторона АС треугольника АВС с тупым углом В равна радиусу описанной около него окружности. Найдите угол В. Ответ дайте в градусах.

Рисунок к задаче 2

По теореме синусов,

\genfrac{}{}{}{0}{AC}{\sin B}=2R

Получаем, что \sin B=\genfrac{}{}{}{0}{\displaystyle 1}{\displaystyle 2}. Угол B — тупой. Значит, он равен 150^{\circ}.

Ответ: 150.

3. Боковые стороны равнобедренного треугольника равны 40, основание равно 48. Найдите радиус описанной окружности этого треугольника.

Рисунок к задаче 3

Углы треугольника не даны. Что ж, выразим его площадь двумя разными способами.

S=\genfrac{}{}{}{0}{abc}{4R}

S=\genfrac{}{}{}{0}{\displaystyle 1}{\displaystyle 2} ah, где h — высота треугольника. Ее найти несложно — ведь в равнобедренном треугольнике высота является также и медианой, то есть делит сторону AB пополам. По теореме Пифагора найдем h=32. Тогда R=25.

Задачи на вписанные и описанные треугольники особенно необходимы тем, кто нацелен на решения задания 16.

Добавить комментарий